Dense 레이어 (Keras)등등 캐글과 CCTV프로젝트로 알게되거나 되짚은 내용 (Tensorflow2.0)(Keras)
Dense 레이어는 입력과 출력을 모두 연결해줍니다. 예를 들어 입력 뉴런이 4개, 출력 뉴런이 8개있다면 총 연결선은 32개(4*8=32) 입니다. 각 연결선에는 가중치(weight)를 포함하고 있는데, 이 가중치가 나타내는 의미는 연결강도라고 보시면 됩니다. 현재 연결선이 32개이므로 가중치도 32개입니다. 예를 들어 성별을 판단하는 문제있어서, 출력 뉴런의 값이 성별을 의미하고, 입력 뉴런에 머리카락길이, 키, 혈핵형 등이 있다고 가정했을 때, 머리카락길이의 가중치가 가장 높고, 키의 가중치가 중간이고, 혈핵형의 가중치가 가장 낮을 겁니다. 딥러닝 학습과정에서 이러한 가중치들이 조정됩니다. 이렇게 입력 뉴런과 출력 뉴런을 모두 연결한다고 해서 전결합층이라고 불리고, 케라스에서는 Dense라는 클래스..